BayesRx
Home
Welcome
Research & Publications
Team
Software
Teaching
Join Us!
Contact
Publications
Type
Uncategorized
Conference paper
Journal article
Date
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
(2019).
BayesRx Group Current & Future Research Efforts
. Overview.
Ha, M*
,
Banerjee S.
,
Akbani R
,
Liang H
,
Mills G
,
Do K-A
,
Baladandayuthapani, V.
(2018).
Personalized Integrated Network Modeling of the Cancer Proteome Atlas
. Scientific Reports.
PDF
Cite
DOI
Ni, Y*
,
Stingo S.
,
Baladandayuthapani, V.
(2018).
Bayesian Hierarchical Varying-Sparsity Regression Models with Application to Cancer Proteogenomics
. Journal of the American Statistical Association.
PDF
Cite
DOI
Bharath K
,
Kambadur, P.
,
Dey D.
,
Rao. A
,
Baladandayuthapani, V.
(2018).
Statistical Tests for Large Tree-Structured Data
. Journal of the American Statistical Association.
PDF
Cite
DOI
Ni, Y*
,
Stingo S.
,
Baladandayuthapani, V.
(2018).
Bayesian Graphical Regression
. Journal of the American Statistical Association.
PDF
Cite
DOI
Kim, S
,
Baladandayuthapani, V.
,
Lee, JJ
(2018).
Prediction-Oriented Marker Selection (PROMISE): With Application to High-Dimensional Regression
. Biometrics.
PDF
Cite
DOI
Bharath, K
,
Kurtek, S
,
Rao, A.
,
Baladandayuthapani, V.
(2018).
Radiologic image‐based statistical shape analysis of brain tumours
. Journal of Royal Statistical Society - Series C.
PDF
Cite
DOI
Zhang X
,
Baladandayuthapani, V
,
Lin H
,
Mulligan G, ..
,
Barlogie B.,..
,
Davis R. E.
,
Ma W. C.
,
Wang Z.
,
Yang L.
,
Orlowski R. Z.
(2017).
Tight Junction Protein 1 Modulates Proteasome Capacity and Proteasome Inhibitor Sensitivity in Multiple Myeloma via EGFR/JAK1/STAT3 Signaling
. Cancer Cell.
PDF
Cite
DOI
Ni, Y*
,
Stingo S.
,
Baladandayuthapani, V.
(2017).
Sparse Multi-Dimensional Graphical Models: A Unified Bayesian Framework
. Journal of the American Statistical Association.
PDF
Cite
DOI
Baljevic, M
,
Baladandayuthapani. V
,
Lin, H.Y
,
Partovi, C.M
,
Berkova, …
,
Zaman, S
,
Gandhi, V. V.
,
Orlowski, R.Z
(2017).
Phase II study of the c-MET inhibitor tivantinib (ARQ 197) in patients with relapsed or relapsed/refractory multiple myeloma
. Annals of Hematology.
PDF
Cite
DOI
Zoh, RS
,
Mallick, B
,
Ivanov, I
,
Baladandayuthapani, V.
,
Manyam, G
,
Chapkin, RS
,
Lampe, JW
,
Carroll, RJ
(2016).
PCAN: Probabilistic correlation analysis of two non-normal data sets
. Biometrics.
PDF
Cite
DOI
Nieto-Barajas, L
,
Ji, Y
,
Baladandayuthapani, V.
(2016).
A Semiparametric Bayesian Model for Comparing DNA Copy Numbers
. Brazilian Journal of Probability and Statistics.
PDF
Cite
DOI
Saha, A.*
,
Banerjee, S.
,
Narang, S.
,
Rao, G.
,
Martinez, J.
,
Rao, A.U.K
,
Baladandayuthapani, V.
(2016).
DEMARCATE: Density-based magnetic resonance image clustering for assessing tumor heterogeneity in cancer
. Neuroimage: Clinical.
PDF
Cite
DOI
Guha, S
,
Baladandayuthapani, V.
(2016).
A Nonparametric Bayesian Technique for High-Dimensional Regression
. Electronic Journal of Statistics.
PDF
Cite
DOI
Azadeh, S
,
Hobbs, BP
,
Ma, L
,
Nielsen, DA
,
Gerard Moeller, F
,
Baladandayuthapani, V.
(2016).
Integrative Bayesian analysis of neuroimaging-genetic data with application to cocaine dependence
. Neuroimage.
PDF
Cite
DOI
Gregory KB
,
Momin A
,
Coombes, KR
,
Baladandayuthapani, V.
(2015).
Latent feature decompositions for integrative analysis of multi-platform genomic data
. IEEE/ACM Trans Comput Biol Bioinform.
PDF
Cite
DOI
Gregory KB
,
Coombes KR
,
Momin A
,
Girard L
,
Byers LA
,
Lin S
,
Peyton M
,
Heymach JV
,
Minna JD
,
Baladandayuthapani, V.
(2015).
Latent feature decompositions for integrative analysis of diverse high-throughput genomic data
. IEEE/ACM Trans Comput Biol Bioinform.
PDF
Cite
DOI
Ha, MJ
,
Baladandayuthapani, V.
,
Do, KA
(2015).
DINGO: differential network analysis in genomics
. Bioinformatics.
PDF
Cite
DOI
Ni, Y
,
Stingo, FC
,
Baladandayuthapani, V.
(2015).
Bayesian Nonlinear Model Selection for Gene Regulatory Networks
. Biometrics.
PDF
Cite
DOI
Baladandayuthapani, V.
,
Talluri, R
,
Ji Y.
,
Coombes, K.
,
Hennessy, B.
,
Davies, M.
,
Mallick B. K.
(2015).
Bayesian Sparse Graphical Models for Classification with Application to Protein Expression Data
. Annals of Applied Statistics.
PDF
Cite
DOI
Zhang, L
,
Baladandayuthapani, V.
,
Mallick, BK
,
Manyam, GC
,
Thompson, PA
,
Bondy, ML
,
Do, KA
(2015).
Bayesian hierarchical structured variable selection methods with application to MIP studies in breast cancer.
. J R Stat Soc Ser C Appl Stat.
PDF
Cite
DOI
Ha, MJ
,
Baladandayuthapani, V.
,
Do, KA
(2015).
Prognostic gene signature identification using causal structure learning: applications in kidney cancer.
. Cancer Inform.
PDF
Cite
DOI
Zhang, L
,
Morris, JS
,
Zhang, J
,
Orlowski, RZ
,
Baladandayuthapani, V.
(2014).
Bayesian Joint Selection of Genes and Pathways: Applications in Multiple Myeloma Genomics. Cancer
. Cancer Inform.
PDF
Cite
DOI
Guha, S
,
Ji, Y
,
Baladandayuthapani, V.
(2014).
Bayesian disease classification using copy number data
. Cancer Inform.
PDF
Cite
DOI
Ordonez, C
,
Garcia-Alvarado, C
,
Baladandayuthapani, V.
(2014).
Bayesian Variable Selection in Linear Regression in One Pass for Large Datasets
. ACM Trans. Knowl. Discov. Data.
PDF
Cite
DOI
Ni, Y
,
Stingo, FC
,
Baladandayuthapani, V.
(2014).
Integrative Bayesian Network Analysis of Genomic Data
. Cancer Inform.
PDF
Cite
DOI
Talluri, R
,
Baladandayuthapani, V.
,
Mallick, BK
(2014).
Bayesian sparse graphical models and their mixtures
. Stat.
PDF
Cite
DOI
Olivares, RJ
,
Rao, A
,
Rao, G
,
Morris, JS
,
Baladandayuthapani, V.
(2013).
Integrative analysis of multi-modal correlated imaging-genomics data in glioblastoma
. 2013 IEEE International Workshop on Genomic Signal Processing and Statistics.
PDF
Cite
DOI
Bhadra, A
,
Baladandayuthapani, V.
(2013).
Integrative Sparse Bayesian analysis of high- dimensional multi-platform Genomic data in Glioblastoma
. 2013 IEEE International Workshop on Genomic Signal Processing and Statistics.
PDF
Cite
DOI
Wang, W
,
Baladandayuthapani, V.
,
Holmes, CC
,
Do, KA
(2013).
Integrative network-based Bayesian analysis of diverse genomics data
. BMC Bioinformatics.
PDF
Cite
DOI
Jennings, EM
,
Morris, JS
,
Carroll, RJ
,
Manyam, GC
,
Baladandayuthapani, V.
(2013).
Bayesian methods for expression-based integration of various types of genomics data
. EURASIP J Bioinform Syst Biol.
PDF
Cite
DOI
Srivastava, S.
,
Wang, W.
,
Manyam, G.
,
Ordonez, C
,
Baladandayuthapani, V.
(2013).
Integrating multi-platform genomic data using hierarchical Bayesian relevance vector machines
. EURASIP J Bioinform Syst Biol.
PDF
Cite
DOI
Ordonez, C
,
García-García, J
,
Garcia-Alvarado, C
,
Cabrera, W
,
Baladandayuthapani, V.
,
S. Quraishi, Mohammed
(2013).
Data mining algorithms as a service in the cloud exploiting relational database systems
. 2013 ACM SIGMOD International Conference on Management of Data.
PDF
Cite
DOI
Wang W*
,
Baladandayuthapani, V.
,
Morris JS
,
Broom BM
,
Manyam G
,
Do KA.
(2012).
iBAG: integrative Bayesian analysis of high-dimensional multiplatform genomics data
. Bioinformatics.
PDF
Cite
DOI
Jennings EM
,
Morris JS
,
Carroll RJ
,
Manyam GC
,
Baladandayuthapani, V.
(2012).
Hierarchical Bayesian methods for integration of various types of genomics data
. IEEE.
PDF
Cite
DOI
Bonato, V
,
Baladandayuthapani, V.
,
Broom, BM
,
Sulman, EP
,
Aldape, KD
,
Do, KA
(2011).
Bayesian ensemble methods for survival prediction in gene expression data
. Bioinformatics.
PDF
Cite
DOI
Lin, YX
,
Baladandayuthapani, V.
,
Bonato, V
,
Do, KA
(2010).
Estimating Shared Copy Number Aberrations for Array CGH Data: the Linear-Median Method
. Cancer Inform.
PDF
Cite
DOI
Baladandayuthapani, V.
,
Ji, Y
,
Talluri, R
,
Nieto-Barajas, LE
,
Morris, JS
(2010).
Bayesian Random Segmentation Models to Identify Shared Copy Number Aberrations for Array CGH Data
. J Am Stat Assoc.
PDF
Cite
DOI
Navas, M
,
Ordonez, C
,
Baladandayuthapani, V.
(2010).
Fast PCA and Bayesian Variable Selection for Large Data Sets Based on SQL and UDFs
. ACM KDD Large-scale Data Mining: Theory and Applications.
PDF
Cite
Zhou, L
,
Huang, JZ
,
Martinez, JG
,
Maity, A
,
Baladandayuthapani, V.
,
Carroll, RJ
(2010).
Reduced rank mixed effects models for spatially correlated hierarchical functional data.
. J Am Stat Assoc.
PDF
Cite
DOI
Baladandayuthapani, V.
,
Mallick, BK
,
Young Hong, M
,
Lupton, JR
,
Turner, ND
,
Carroll, RJ
(2009).
Bayesian Hierarchical Spatially Correlated Functional Data Analysis with Application to Colon Carcinogenesis
. Biometrics.
PDF
Cite
DOI
Cite
×